Advanced Geophysical Surveying Understanding the Subsurface

Arc Surveying & Mapping, Inc.

Quonset, RI

Rock Dredging Encounter

Boston Harbor, MA

Rock Location Pre-Dredging

Jacksonville, FL

Channel & Harbor Deepening

Jacksonville, FL

Drydock Excavation

* Rockledge, FL

Sediment Remediation

❖ Bayou Chico, FL

Sediment Remediation

Port Canaveral

Channel Widening & Berth Construction

❖ Fort Lauderdale. FL

Sand Trap Plan & Spec

Miami, Fl

Pre-Dredge Rock Location

Freeport Harbour, Bahamas

Sheet Pile to Top of Rock

San Juan, PR

Pre-Dredge Widening

❖ Mobile, AL

Nearshore Disposal Area

❖ Portland, OR

Sediment Remediation

❖ Coos Bay, OR

Harbor Deepening & Widening

Kissimmee, FL

Contaminated Lake Sediments

❖ Mobile, AL

Channel Deepening & Widening

Brunswick, GA

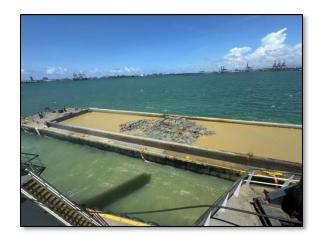
Pre-bid Investigation

San Juan Harbor, Puerto Rico Deepening & Widening Survey

Curtin Maritime specializes in clamshell dredging, tackling large scale capital projects with difficult geotechnical conditions. We carry many different sized buckets in our fleet to tackle varying strata of material and it's important that we are able to select the correct tool for the job each and every day. The industry standard for project owners is to provide typically outdated boring logs taken sporadically through the dredge areas to provide an idea of what the geological composition of the in-situ dredge material is. While a trusted and true method, it requires a lot of interpolation and can lead to many inaccuracies, which then leads to poor planning for project bucket utilization. Swapping between different buckets frequently can cause lengthy downtime delays and increased costs and schedule for stakeholders.

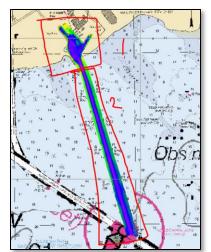
A more concise method is to perform a geophysical survey to create visual and digital understanding of the of the dredge template, like the method that Arc Surveying & Mapping is leading in the US.

We recently hired Arc to conduct a geophysical survey for our deepening and widening project in San Juan, Puerto Rico: a project slated to be our company's most complicated bucket strategy yet due to varying resistance values in the material. Arc was able to create a 3D model mapping our dig areas with different useful visuals depending on how we needed to plan. The data from the survey has lined up better than any boring log ever has based on material we've removed to date, and we at Curtin can recommend that federal agencies, ports, and harbors should consider this service as a valuable investment tool for any capital dredging project that's guaranteed to save on cost and schedule.


Kyle Herrick cell: 386-847-4692

email: kherrick@curtinmaritime.com

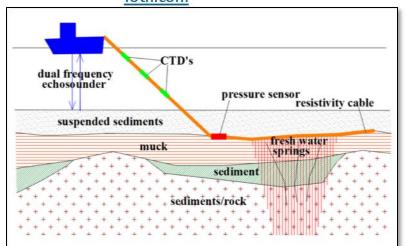
Quonset, Rhode Island Channel Deepening & Widening


"On several occasions Foth has worked with ARC to develop geophysical data for marine projects. The results of the Aquares survey have provided valuable information that helped move our projects forward. We have found good correlation with other methodologies and were particularly excited about the coverage the system attained. Arc was forthright in explaining the benefits and limitations of the system and helped guide us through the analysis and use of the data produced by the system. The use of the Aquares system improved our overall site analysis."

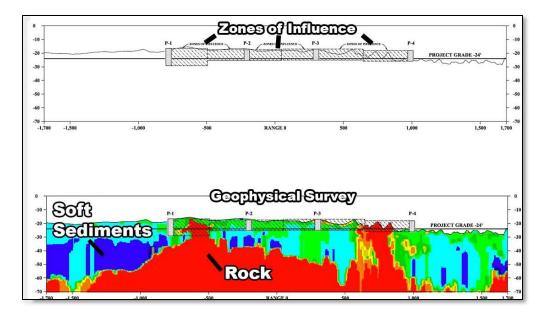
Regards,

Mike Campagnone, P.E.

Senior Technology Manager – Geophysical Surveys Licensed in MA, RI, NY



Foth Infrastructure & Environment, LLC

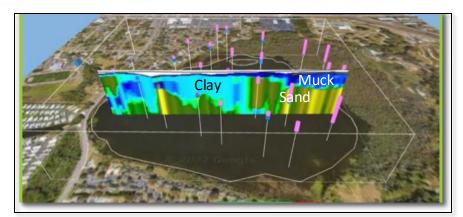

15 Creek Road Marion, MA 02738 Direct: (508) 748-0937

Cell: (401) 663-5782

foth.com

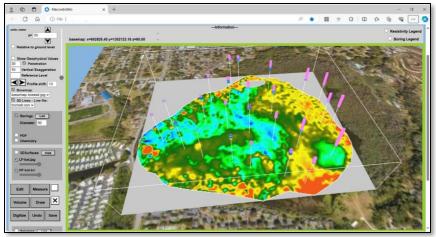
Lakeland, Florida **AECOM** Contaminated Sediment Survey

On behalf of AECOM, I would like to commend Arc Surveying and Mapping for their outstanding effort in completing the electrical resistivity surveying and subsurface profiling of Lake Bonnet in Lakeland, FL. This high-profile project, which has received over \$42 million in grant funding to reduce flooding, required a comprehensive subsurface profile of the lake's sediments to evaluate the best alternatives. Your team's technical expertise and extensive knowledge of the dredging industry have been invaluable in helping us visualize the subsurface sediments in an accurate and manageable manner.

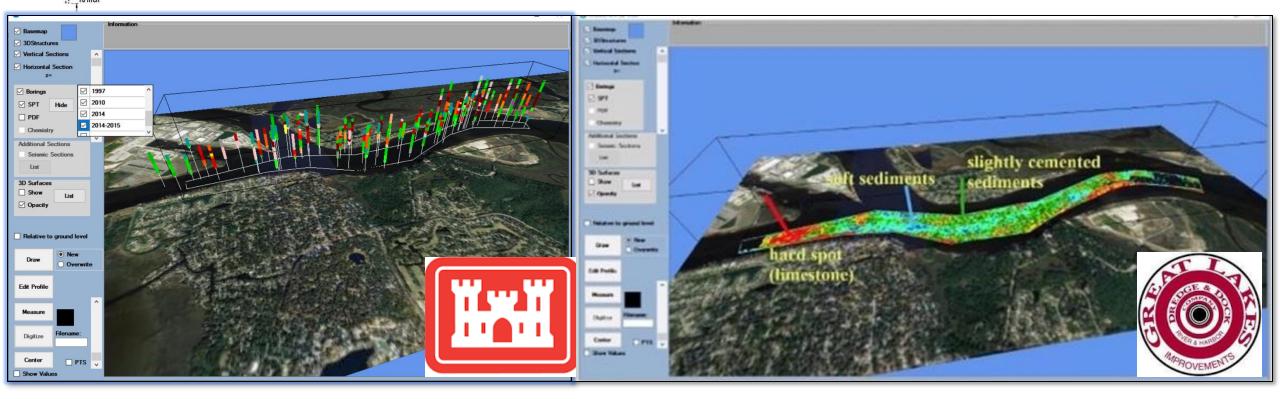

I have relied on Arc Surveying and Mapping's expertise for over 20 years and consider them to be one of the best bathymetric and geophysical surveyors in the business. Their commitment to excellence and consistent delivery of high-quality results make them a trusted partner for any surveying and mapping needs.

Dan

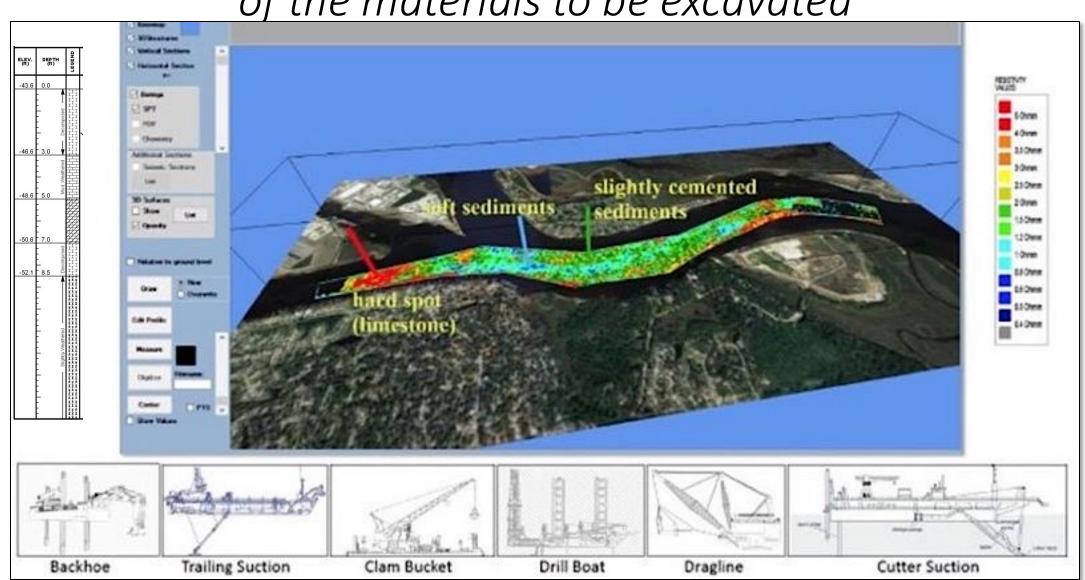
Daniel J. Levy, P.G. Vice President, Environment National Director / Founder - Algae Practice M 305.519.1194 dan.levv@aecom.com


AECOM

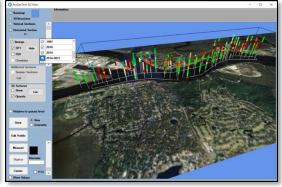
110 East Broward Blvd Suite 700 Fort Lauderdale, FL 33317, Country T 305.519.1194



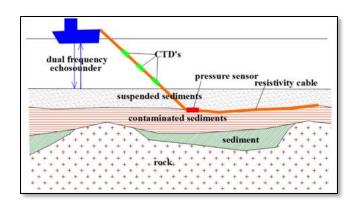
or pulleys(s)

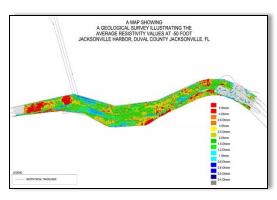


Over 80 core borings required by the ACOE to describe the Jacksonville Harbor Deepening subsurface.


Aguares Geophysical Survey described the entire Jacksonville Harbor subsurface requiring minimal core boring to describe the geotechnical characteristics.

Choose Equipment Types Scientifically
Understand the electrical resistivity and mechanical strengths
of the materials to be excavated


Identify the Entire Subsurface Reduce the Number of Borings Substantially Reduce Subsurface Investigative Costs



Core borings are necessary to describe subsurface material strengths and types.

Core borings require a Jackup barge to acquire subsurface samples due to existing channel depths which are usually in excess of 30 feet deep. Boring locations are often dependent on ship traffic and sometimes not acquired in heavy ship traffic channels. Many days are required to mobilize and acquire core samples.

Resistivity surveys are necessary to describe 100% of subsurface geological structures.

An electrical resistivity survey is accomplished in two or three days and describes the entire subsurface to a depth of 40 feet below existing bottom. A 3D Integrated digital geologic model is provided identifying changes in subsurface geology and a scientific method od choosing core boring locations.

In most cases, the cost of an Arc Aquares geophysical survey is less than the mobilization cost of a Jackup barge.

Reduce the number of borings necessary to describe subsurface strengths and material types by performing a geophysical survey.

Understand the Subsurface in Clear Detail Permitting Selection of Different Buckets & Cutters for Different Material Types

72 cy Bucket

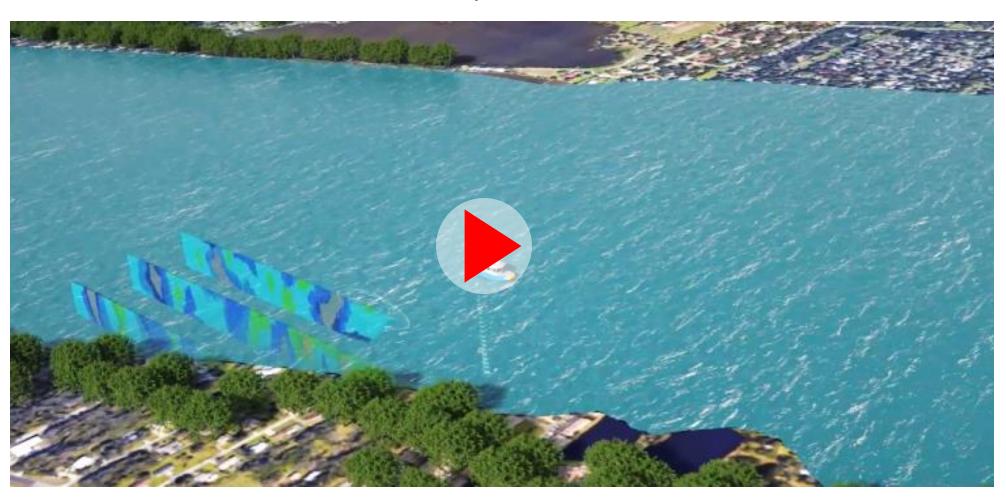
Rock Hydraulic Cutter


Hard Material Backhoe

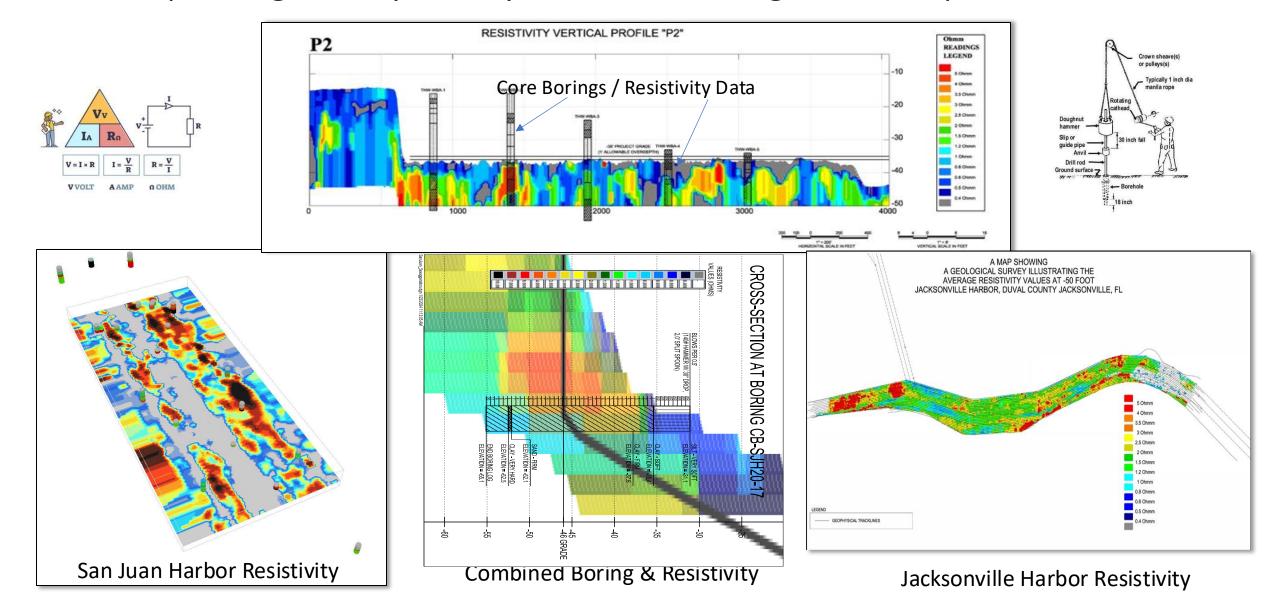
Backhoe Clam

Rock Grapple

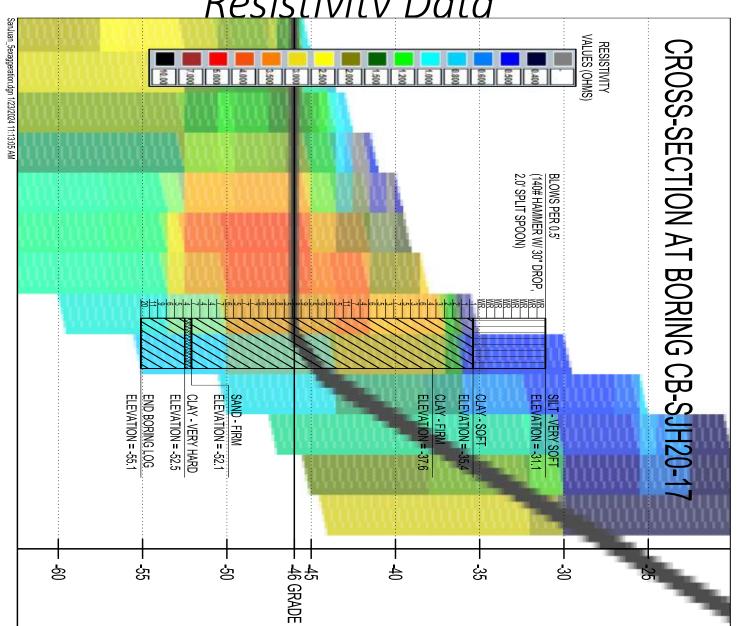
Medium Backhoe



Medium Material Clam

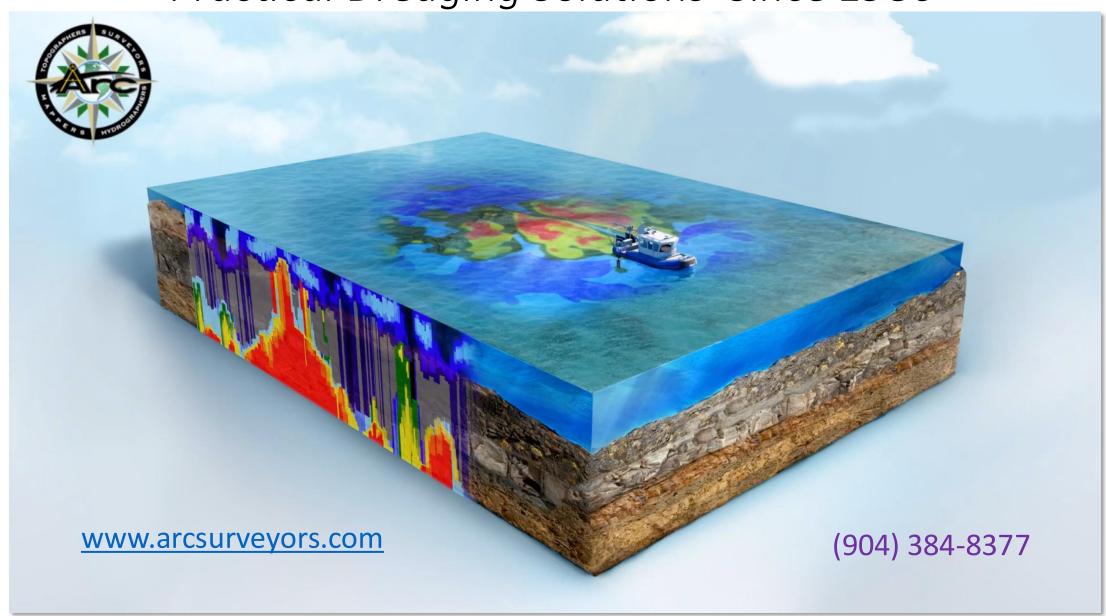

Trailing Suction

Rockledge Florida Contaminated Sediment Location Survey How the System Works



Quality Control

Comparing Bathymetry / Core Borings and Aquares Data



Comparison of SPT Material Strength to Resistivity Data

	LLING	LOC	South Atlantic			SOLV	ile Di			OF 2 SH	EET
		arbor F	lavigation Improvements		10. CO	CRO	HATE	SYSTEMEDA		VERTICAL	_
	SHG DESIG		LOCATION COORDINATES	_	11. MV	State	Phen	e, PRIVI (U	8. FL) NAD83	NUTO HAMES	
CB-SJH2B-17 X = 768,944 Y = 876,421						Acker AO-2					(UU)
	cuelos, PSC		LUNINAL IUR		12. TO				18	0	,,
N	ācolas And	ino						BOUND MA			
(E)	VERTICAL	нован	DES. PROM BRARING VERTICAL	·	_		ORDER C		STARTED	COMPLETE	
	INCLIMED CKMESS OF	OVER	FURDEN N/A	_				OP OF BORS	(07-24-20 HO -31.1 Ft.	07-24-2	0
	TH DINLLE			\dashv	17. TO	TAL I	1500/	ERY FOR D	DRING 93 %		
	W. DEPTH			\neg	18. 30			MD TITLE O	P INSPECTOR chrical Engineer		
elêv.	оедтн	CESSEND	CLASSIFICATION OF MATERIALS	5	mile.	BOX OF	380	/	REMARKS	55 57	H-VALUE
-31.1	0.0						4	-31.1			
			SILT, inorganic-L, nonplastic, very soft, sit, few subrounded fine-grained sands	mostly sized	1.4	1		1		WR	
	F	Ш	sit, few subrounded fine-grained send- quartz, no reaction with HCl, wet, 93 5/2 grayish green (ML)		73	8-1	1		SPT Sampler	WR	WE
		Ш			Н	H		-32.6		WR	
	E	Ш		6	100	5-2	0		SPT Sampler	WR	WF
	Ė.	Ш		- 1	7		Þ.	-34.1		WR	
	E	Ш		. 1	100	8-34			SPT Sampler	WR	
-35.4	4.3	Ш	ALEL -35.2 Pt., little angular fine-graine	sd	W.	5-3b		-35.6		1	1
	E		you be 30.2 FC, the angular marganic yeard stand shall CLAY, fat, high planticity, wolf, monthy of some six, few subtrounces fine grained sand-stand investmen, two angular fine in medium grained sand-stand shall, wolk marction with HCI, with, SC 6/2 pale gree	iny.						_ 1	
	ŧ	11	some six, few subrounder time grained sand-sized imestone, few angular fine t	to	47	84			SPT Sampler	_ 2	4
	F	11	reaction with HCI, wat, 5C 62 pale gree	en (CH)	\vdash	5-5a		-37.1		3	1
	Ė	11	"At EL -37.6 Ft. high plasticity, firm, mo	etty day.	100		1		SPT Sampler	4	
	F	11	At El37.6 Pt., high plasticity, firm, mo little imentioner few subscription fine-gra- sand-staed rock fragments, no reaction HCl, wet, rock structure. 10/17 8/3 yello	with		8-50		-38.6		- 6	10
	Ė.	\mathscr{D}	Traction stronger to the part		100					- 3 - 5	
	E	0			100	8-6		-40.1	SPT Sampler	- 5	12
	F	Ø			\vdash	Н		-40.1		3	
	E	9			100	S-7			SPT Sampler	- 5	11
	į.		From El41.6 to -47.6 Pt., trace organi	ic matter	.			-41.6		- 6	
	F	0	110102. 410 0 41011,000 0 901		93	s-8			SPT Sampler	- 4	
	ļ.	0			1			-43.1	37 / 34/44	11	18
	Ē	//					1			- 5	
	Ŀ	0			100	8-9			SPT Sampler	- 6	15
	Ė	\mathscr{D}			\vdash	H	-	-44.6		9 5	
	F	0			100	S-10			SPT Sampler	9	
	-				\perp			-46.1		- 5	17
	ļ.	W			100	8-11			SPT Sampler	- 5	
	F	//			1100	0-11		-47.6	on output	-8	16
	ŀ	0			\vdash		1	140,00		6	1
	E	0			73	S-12			SPT Sampler	7	14
	Ė	0			\vdash	L		-49.1		7 5	
	E	0			100	8-13		1	SPT Sampler	- 6	
	Ė	0					4	-50.6		7	13
	E	9				4	9			4	
	ŧ	0			100	3.14			SPT Sampler	- 4 - 7	11
-52.1 -52.5	21.0		ALEL -51.8 Ft., little anguler to auteng. to coarse-grained sand-sized shell SAND, diayay, mostly subrounded fine-	ular fine	ж		1	-52.1	-	4	
	E		SAND, dayey, mostly subrounded fine- send-sized quartz, fee subrounded fine	grained grained	100	S-15			SPT Sampler	5	11
	Ė	7	send-cland querts, fees subrounded fire- sand-sized shell, no reaction with HCI, s planning, 2.5YR 7/12 Bright Crange (55 CLAY, feen, medium pleaticity, very feer mostly clay, little subrounded fine-grain	C) For	-			-53.6		6	l "
	F	4	mostly day, little subrounced fine-grains	ba	100	8-16	Þ		SPT Sampler	9 11	
-55.1	24.0	1/4	resolved quarts, few angular to satur fine-grained sand-sized rick fregments, reaction with HCL, wet, rock structure 5 YR SH Light (Yellowier)Perk (CL)	no	1	10		-55.1	a . surpes	20	31
					A				nmer w/30° drop used wit 3/8° LD. x 2° O.D.).	th 2.0° split	1
- 1	Ŀ		NOTES:					apoon (1-	36.10 ×5.00)		
		1	USACE Jacksonville is the augustal these original files.	n for							
	Ē					ı					
					1						ı
			State are field visually classified in accordance with the Unified Soils Class System.								ı
			 Soils are field visually classified in accordance with the Unified Soils Class 								
			State are field visually classified in accordance with the Unified Soils Class System.								
			Scale are field visually classified in accordance with the Unified Soils Class System. Depth to Muslime; 327								
			Soils are field visually classified in accordance with the Unified Soils Class System. Depth to Muslime; 50* Tidel Disvetors 0.7* Laboratory Testing Results SAMPLE SAMPLE LABORATE	offication							
			Sofe see field visually classified in account of the University Sofe Class Specime. Depth to Massime; 30" Titled Elevation: 0.7" Laborasivy Testing Results SAMPLE SAMPLE LABORATION DEPTH CLASSIFICATION.	offication							
			Soils are field visually classified in accordance with the Unified Soils Class System. Depth to Muslime; 50* Tidel Disvetors 0.7* Laboratory Testing Results SAMPLE SAMPLE LABORATE	offication							
			2. Set swite-through classification coordance with the Unified Solid Class System. 3. Depth to Machine \$2' 5. Lisbonston 9.7 5. Lisbonstony Testing Results SAMPLE LABORANT 10 DEPTH CLASSIFICE 3-2 150410 OH 3-7 Librarisation Code OH 3-7 Librarisation Co	ORY ATION							
			2. Sale varieté vausly despiration accordance en în de Unine Soles Class System. 3. Deptir lo Marishe, 27 4. Telel Eliverson 0.7 5. Laboratory Territig Results 6.00	ORY ATION							
			2. Sale vasified vausly despired in accordance with the United Sale Class System. 3. Depth to Markets 27 4. Titlel Elevation 6.7 5. Laboratory Testing Results 100 DEPTH CLASSIFIC 102 15000 Oct 104 Vasified despiration based on greature SAMPLE LABORATORY	orry ATION							
			2. Sale seaf-left vausely classification control one on the brained Soles Class System. 3. Depth to Muschine 37 4. Tellal Constens 97 5. Laboratory Teering Peruits SAMPLE SAMPLE LABORATION 5.2 1.504.0 CH 5.7 8.004.0 CH Chab visual desertization based on gredience SAMPLE LABORATION 1.5 Water Solders 112	OFFY ATION Cation							
			2. Sets was best requesty classification concretance with the Unified Solid Class System. 3. Depth to Muschine 32* 4. Tried Convention 0.7* 5. Lebonstory Tending Results SEARCE SAMPLE LABORATI ID DEPTH CLASSIFICATION 3.2 1.504.0 Oct 3.7* 5. Section 1.0* 5. 1.504.0 Oct 5. 1.50	OFRY ATION Salion							
			2. Sets real-felt request classification coordance with the Unified Sets Class System. 3. Depth to Muschen 32* 4. Trial Covering Results SHAMPLE LABORATION 52. 1.504.0 OH 53.7 8.504.0 OH 54.7 8.504.0 OH 55.7 8.504.0 OH 55.7 8.504.0 OH 56.7 8.504.0 OH 56.7 8.504.0 OH 57.7 8.504.0 OH 58.7 8.504.0 OH 58.7 8.504.0 OH 59.7 8.504.0 OH 5	ORRY ATION Selion							

Arc Surveying & Mapping, Inc. Practical Dredging Solutions Since 1986

